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We study in detail a recently proposed model of interface growth that admits an exact solution
[T. J. Newman, Phys. Rev. E 49, R2525 (1994)]. In addition to explicitly calculating the previously
reported results for the interface width, we investigate the role of the temporal cutoff. We find that an
inverse power of this cutoff separates two different scaling regimes in time for (substrate) dimension

d > 2.

We relate this result to the fixed point structure of a simplified version of the original

model that closely resembles the Kardar-Parisi-Zhang equation, and demonstrate the existence of
strong-coupling behavior in this model for intermediate times.

PACS number(s): 05.40.+j, 68.45.—v

I. INTRODUCTION

There has been continued interest in the nonequilib-
rium dynamics of interfaces over recent years [2]. The
ideas fueling this interest are dynamic scaling and uni-
versality. A model which has received much attention
is that of Kardar, Parisi, and Zhang (KPZ) [3] which is
defined by a simple nonlinear Langevin equation for the
interface height h:

8:h = vV2h + %(Vh)2 +7. (1)

This equation is applicable to interfaces which evolve
through growth normal to the local interface, such as
simple solid-on-solid (SOS) models [4]. Exact results are
available in d = 1 (throughout this article, d will de-
note the substrate dimension, so that the dimension d’ of
the space in which the interface exists is d' = d + 1)
and indicate the existence of a nontrivial asymptotic
scaling regime in which the interface width W(L,t) =
Lxf(t/L?), with f(z) ~ 2P for z < 1 with 8 = x/z,
and f(z) — const for z > 1; with x = 1/2 and z = 3/2
[5]- The situation is less clear in the more physically rel-
evant case of d = 2—the (lower) critical dimension for
the model. Here the coupling A is marginally relevant
and the renormalization group (RG) flow indicates the
existence of a strong-coupling fixed point for which no
results are presently available. Given the limitations of
conventional analytic tools, one is driven to search for
other approaches with which to attack the problem. In
this paper we present just such an approach—one of ex-
act solution of a not-too-distant relative of the problem
of interest, in the hope of learning something pertinent
to the original problem. The main results of this calcu-
lation were presented in a recent Rapid Communication

[1].
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The outline of the present paper is as follows. In Sec.
II we define the model and briefly describe its potential
physical application. We then make a series of trans-
formations in order to prepare for the explicit calcula-
tions in the succeeding sections. The simplest quantity
to evaluate is the evolution of the average height of the
interface—this is presented in detail in Sec. III. The more
complicated evaluation of the interface width is presented
in Secs. IV and V for d greater or less than 2, respectively.
We have split the presentation into two sections due to
the nontrivial role of the temporal cutoff for d > 2. Sec-
tion V1is dedicated to the evaluation of the average inter-
face roughness E(t) = ((Vh)?2). Comparing this quantity
to the time derivative of the average height indicates the
relevance of the nonlinear term in the dynamics.

Another interesting quantity to calculate is the height-
height correlation function C(r,t) = ([h(r,t) — h(0,1)]?)
which interpolates between the interface width and the
interface roughness. The evaluation of this function for
the present model is of a much higher order of difficulty
than for the other functions considered here, and is there-
fore beyond the scope of the present work.

From the results of the exact calculation we can un-
derstand which terms in the original model are relevant
and thus produce a simplified version of the model. This
is studied in Sec. VII. It will be seen that this simplified
model may in turn be transformed into a different in-
terface model, closely resembling the original KPZ equa-
tion. The fixed point structure of this new model will
be discussed in the light of the known results obtained
in the earlier sections, with emphasis being placed on an
intermediate-time strong-coupling regime occurring for
d > 2. We close with a discussion of the results in Sec.
VIIL

II. DEFINITION AND “REFORMULATION”
OF THE MODEL

The model is defined by the Langevin equation for the
interface height h(x,t),
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d;h = vVih + :2\-(Vh)2 + 271177 exp(—Ah/2v) , (2)
where h is an absolute height in contrast to the field A
appearing in Eq. (1) which is only defined up to some
additive constant (usually taken to be the mean height
of the interface). This difference in interpretation for the
two fields occurs because h appears in the noise term in
Eq. (2) without being acted upon by some differential
operator, thus breaking the translational invariance of
the equation in the direction perpendicular to the sub-
strate. The second difference is in the allowed range of
the stochastic source 7. In the KPZ equation, the noise is
taken to be Gaussian distributed with §-function corre-
lations in both space and time—this is nearly always the
simplest calculational choice and one relies upon some de-
gree of universality in making such a simplification. We
are unable to use this type of noise in the above equation
for the following reason. We notice that the multiplica-
tive factor becomes exponentially large for h < 0. This
is physically unreasonable and should be avoided. To
achieve positive values of the field h(x,t) we require the
distribution P[n] to only supply positive values of the
noise 77. The simplest choice turns out to be an exponen-
tially decaying distribution (with n € [0, o0])

Pl ~ exp~(1/D) [ dy / Tdtnyn). ()

All the results in this article will be calculated with such
a distribution. Averages over P will be denoted by an-
gle brackets. We have repeated the calculations for other
choices of distribution, namely, uniform and bimodal, in
order to address the question of universality with respect
to the choice of P. The results obtained using these dis-
tributions differ from those presented here only in numer-
ical prefactors, thus indicating a large degree of univer-
sality in these results with respect to the choice of noise
distribution.

Before proceeding with the analytic investigation of
Eq. (2) we shall briefly consider the physical meaning of
the equation. The deterministic part of the equation is
identical to the usual KPZ terms. The physical inter-
pretation of the noise term in Eq. (2) is less clear. First
one must admit that the use of Langevin equations at
this phenomenological level is lacking a formal grounding.
The past successes of such an approach (for instance, in
phase separation [6] or fluid turbulence [5]) gives us some
confidence in capturing the essential physics. The use of
multiplicative noise is especially difficult to justify due
to the accompanying interpretation problems (Ito versus
Stratonovich) [7]. With this in mind we shall not expend
too much effort in justifying the noise term in the above
equation (its particular form is chosen to allow an ex-
act solution). We may imagine that such a term would
be appropriate for the situation of a KPZ-type interface
evolving into an environment whose density decreases ex-
ponentially with height. If we think of a solid growing
into a depositing vapor, it is clear that the noise strength
will be crudely proportional to the density of the vapor.
Therefore, if the density of the vapor decreases exponen-
tially with increasing height, the noise term in Eq. (2) is
not unreasonable.

Objections to the preceding discussion in defence of the
physical status of the equation may certainly be raised.
However, we would like to stress that the main reason for
studying Eq. (2) is to learn something about real inter-
faces (as described by the KPZ equation, for instance),
and the model above has been carefully chosen for just
this purpose as we shall soon see.

Before proceeding with the calculation we may gain
some insight into the likely behavior of the system from
simple physical arguments. Imagine an initial condition
of a flat interface located at h = 0. For early times, the
size of Ah/2v will be small compared to unity and we may
expand the exponential factor in the noise. The lead-
ing order equation in this limit is simply the Edwards-
Wilkinson (EW) model [8] (linear diffusion equation for
h) and we may expect to retrieve the usual results ob-
tained for that model—i.e., the average height will pro-
ceed linearly in time (the noise has nonzero mean), and
the width will increase as W (t) ~ t(23~9/4 for d < 2, as
[In(¢)]}/? for d = 2, and will rapidly grow to a constant
(depending on the temporal cutoff) for d > 2. As time
proceeds, the exponential factor in the noise will become
relevant and the effective noise strength will be severely
reduced. Exact prediction is now difficult from an intu-
itive level, but we can expect the average height to in-
crease logarithmically slowly (thus preserving the rate of
deposition as h increases), and the interface width to de-
crease in time, due to the strongly reduced noise strength.
We shall find that these simple predictions are indeed
qualitatively correct, thus indicating that the physical
contact with the KPZ equation and related models is
lost, since in these models one expects growing fluctua-
tions in time. However, in Sec. VII, we shall see how
to apply these results to a related model which is much
more closely related to the original KPZ equation.

As a first step, we make the simple rescaling h — h =
Ah/2v, so that the field h is now dimensionless. Equa-
tion (2) is now of the form

Oth = vV2h + v(Vh)? + ne b, (4)

The scaling of h to a dimensionless variable has removed
A from the equation of motion, therefore A\ is no longer
a free parameter in the model. However, in Sec. VII
we shall study a simplified version of our model which is
the natural “bare” theory, analogous to the bare theory
(A = 0) for the KPZ equation which is the EW model.

The Hopf-Cole transformation w = e® when applied to
Eq. (4) yields the linear diffusion equation for w:

Ow = vV3iw + 1. (5)

The same transformation may be applied to the KPZ
equation and one then obtains a multiplicative noise
equation for w which may be formally interpreted (most
clearly by use of the Feynman-Kac formula) as describ-
ing the evolution of the generating function for directed
walks in a random medium [9]. No such interpretation
exists for the present model.

For some initial condition w(x,0) we have the solu-
tion of Eq. (5) in terms of the heat kernel g(x,t) =
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(4mvt)~4/2 exp(—x?/4vt) in the form

w(x,t) = /ddy/o dt' g(x —y,t—t')
x[w(y, 0)8(t) + n(y,t")]. (6)

Inverting our original transformation then yields the ex-
act solution of Eq. (4) as

h(x,t) = ln{/ diy /t dt'g(x —y,t—t)
x {explh(y, )] 5(¢" +n(y,t')}}. )

In what follows we shall only consider the case of an ini-
tially flat interface located at h = 0, so that h(x,0) =0
for all x. More general initial conditions may be handled
within this approach and such an extended study would
be of interest. We also mention that the above transfor-
mation yields an exact solution as demonstrated above
in the presence of an arbitrary function of time f(¢) ap-
pearing as an additional multiplicative factor in the noise
term of Eq. (4). The case of f(t) = et is of interest since
one can show that the average height proceeds linearly in
time with a velocity 2vc/A. It was our original intention
to include a study of the fluctuations in this case in the
present article. However, we feel that it would be better
presented elsewhere due to the more general results and
issues to be presented here.

(Before proceeding, it is worth commenting that the
range of possible transformations similar to the Hopf-
Cole transformation above is vast, and that among this
great number there may be some of genuine interest. The
general action of such transformations may be under-
stood as to take linear, additive noise Langevin equations
(for which one knows the solution) into nonlinear, mul-
tiplicative noise equations. The difficulties in proceed-
ing are twofold. First, the resulting nonlinear equation
should have some relation to physics in order to be wor-
thy of study [since an infinite number may be generated
trivially from Eq. (5)]; and second, the transformation
used should be invertible in order to express the solution
of the nonlinear equation in terms of the Green’s function
solution of the original linear problem.)

With our choice of initial condition the solution of
Eq. (4) is given by

h(x,t) = In {1 + /ddy /Ot dt' g(x —y,t — t')n(y,t’)} )
(8)

We are of course interested not in the solution of
Eq. (4) as given above, but in averaged properties of it
over the distribution P. In particular we shall exam-
ine the average height (h), the interface width W(t) =
[(h?) — (h)?]'/2 and the average interface roughness
E(t) = {((VRh)?). From the form of h(x,t) given above
in Eq. (8) we see that the evaluation of such quantities
necessitates the averaging over a logarithm of a space-
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time integral of the noise 7. Much of our progress with
this problem is made possible with the use of the follow-
ing representation of the logarithm function

Inz = /0oo %“(e—" _eue) )

which was introduced in a previous study of determinis-
tic Burgers turbulence [10,11]. One sees that this repre-
sentation pushes the argument of the logarithm into the
argument of the exponential function, which for averag-
ing purposes is very natural. Combining Eq. (8) with
Eq. (9) yields

hxt) = [ et - v (10)

where

Y(u) = exp (—U/d"y /Ot dt' g(x —y,t— t')n(y,t’)> .
(11)

This ends the preparatory steps required in order to be-
gin the calculation proper. We start with the simplest
calculation, that of the average height, in the next sec-
tion.

III. EVALUATION OF THE AVERAGE HEIGHT

The calculation to be presented in this section is, in
essence, quite simple. However, since it sets the stage
for most of what is to follow, we shall present the deriva-
tion of (h) in some detail. Since we assume translational
invariance in the substrate (hyper) plane, we may con-
tent ourselves with calculating the average height at the
origin of spatial coordinates x = 0. From Eq. (10) we
have

ko) = [T Eetn-wey. a2)

With the distribution defined in Eq. (3) one needs to
evaluate the following path integral for (¢ (u)) [the use
of the term “path integral” really denotes a multiple
(discretized) space-time integration over the probability
function P; possible misuse of the term due to the nonex-
istence of continuous paths in 7 space is acknowledged]:

atA [
e dmn
5 |

@Al n[(1/D) + ugmn,n )

1

W) =]]

1+ ung,n]—l. (13)

N—

n=0
Xp
N
m n=1

A few comments are in order here concerning notation.

We have discretized space using a cutoff a and have de-
fined an integer site label m = y;/a. Time has also been
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discretized using a cutoff A and we have defined an in-
teger time slice label n = ¢//A. The symbol g, , has
the obvious meaning of g(y/a,t'/A) with the functional
form of g as defined earlier in Sec. II. The limits of the
product integration over time are from the initial time
t’ = 0 to the final time slice but one, N = t/A — 1, the
final time slice being excluded from the integration, due
to adopting an essentially Ito prescription for the noise
in which the noise at a slice n; is considered uncorrelated
with the field A, ,, in that slice.

We now wish to reexponentiate the expression so that
the product may be considered as a sum, and a contin-
uum limit (i.e., replacing sums with integrals according
to a?AY, 3. — [d% [dt') may be taken. Following
these steps leads us to

($(w) = exp<~a—,}z [ty [ av wmp +uDg(y,t')]>.

(14)

For ease of notation we shall now rescale all lengths with
respect to a. The explicit a dependence of the results may
be obtained from simple dimensional analysis. We prefer
to retain the temporal cutoff explicitly, due to its appear-
ance in the lower limit of the time integral in Eq. (14).
We now wish to make some simple substitutions in or-
der to simplify the above expression. We define s = ¢/t
and z = y%/(4vt') giving (after performing the angular
integrations over the substrate)

(Y(u)) = exp(—z‘#:/ij /Ooo de zd/271

1
x/ ds s/21n[1 + (uD/7)s~ 27|, (15)
At

where 7 = (4mvt)4/? and T'(c) is the gamma function [12].
Finally we integrate by parts on z and obtain

I

((w)) = exp| - “1~¢

where
#(z,6) = [T +d/2)]! /°° dz xd/ze_“Q(ze_‘”,J) ,
0

(17)
with
$d/2

Q(a, 8) :/5 I ey (18)

The expression for (¢ (u)) is all that is required for the
calculation of not only the average height, but also the
width and surface roughness as well; so no more explicit
averaging will be required.

The function ¢(z,6) is rather complex. To simplify
our analysis we shall concentrate on definite (asymptotic)
time regimes. The essential limits we shall take are z =
(uD/7) < 1and § = A/t < 1, so we are interested in the
regime where both arguments of ¢ are small compared to
unity. One may convince oneself that in order to calculate
the leading term for the average height, one simply needs
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the leading term in the double expansion of ¢ in terms
of z and §. When we come to evaluate the width in
the subsequent sections, the next order will be required
and will be found to have a nontrivial dependence on the
substrate dimension d.

The leading term in the expansion of ¢(z,d) is simply
unity, so we approximate Eq. (16) by

(W) = exp(~57)- (19)

Substitution of the above form into Eq. (12) along with
the use of the logarithm representation Eq. (9) then yields

(k) = In(1 + Dt/A) (20)

for all d. When we come to study the corrections to the
function ¢ we shall find that Eq. (20) is valid throughout
the entire region of interest. The form for (h) indicates
a natural crossover time t; = A/D. For t < t; we have
(h) = t/ty, i.e., linear growth in accordance with the
qualitative prediction stated earlier. For ¢ > ¢; we have
(h) = In(t/t1) which again is in accord with our previous
intuitive reasoning. v

In the next section we shall evaluate the interface fluc-
tuations for d > 2. This is more involved than the cal-
culation for d < 2, but we have chosen to present it first
since it follows naturally from the above calculation, and
also because it will indicate a much simpler way to evalu-
ate W (t) for the case of d < 2. The main physical result
to appear from the following calculation will be the emer-
gence of another crossover time t; which is only relevant
for d > 2.

IV. EVALUATION OF THE INTERFACE WIDTH
FOR DIMENSIONS > 2

The interface width is defined as W(t) = [(h%) —
(h)?]*/2. 1t involves bilinear forms of logarithms, so we
apply the logarithm representation Eq. (9) twice. One
then finds the following form for W:

2y = [ [T W o)t
wie = [0 [ [+ )
() (b)) (21)

Therefore knowledge of the function (i(u)) suffices to
calculate the width.

In order to get a feel for the calculation, let us take ¢
very large (with respect to all time scales), and expand
the function (3 (u)) for small values of u. Referring to
Eq. (14) we can expand the logarithm in powers of v and

perform the integrals over powers of the heat kernel. One
then finds

uDt u?’D?
($(w)) = exp{’T @ 2)Brvn)e

+O(u3D3(uA)_d)}. (22)

Substituting this expression into Eq. (21) and rescaling
u and v with respect to Dt/A = t/t; then yields
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© du [P dv s i d
Wi :/ :/ vv et ){exp [(d—2)(87ru)d/2tz (u+v)? + O(u* A% 3)}
0 0

A2~d/2

TP [(d — 2)(8mv)d/2¢2

We see that the important values of u and v are ~ O(1)
due to the exponential prefactor in the integrand. We
may therefore expand down the exponential terms in the
curly brackets as long as A2~4/2,=4/2t=2 « 1. Also for
consistency in the expansion in © and v we require that
the cubic terms are smaller than the quadratic terms,
which implies A1=%/2y=4/2¢~1 « 1. These conditions
translate to t > Al=4/4,=4/4 and t > Al~-9/2,-d/2,
For v « 1/A, the second condition is the stronger, and
this becomes the definition of a second crossover time:

Al—d/z

tr= i (24)

This calculation was performed for d > 2, and we see
that ¢; can become very large as the effective temporal
cutoff is made smaller. For t > t, the above expansion
is valid and we have from Eq. (23) the result

_ 2(8m) %2 (Aty)

W) ="y

(25)

In order to calculate the width for ¢ < t; we need to
study the function (¥ (u)) more carefully. Referring to
Eqgs. (16)—(18) we shall expand the function ¢(z,d) in
the regime defined by (i) z < 1, (ii) § « 1 with (iii)
z > §%2. The third condition will become transparent
in the course of the calculation. Let us concentrate first
on Q(a,d) where o = ze™® < 1 due to condition (i).
Changing variables s — s = as~ %2 we have

as”4/2  _1-2/d

Q(a,d) = (2/d)a?/? / ds ey

s—1-2/d

= (Z/d)(lz/dk/oo ds m

oo s—l—Z/d
(2/d)al/ , T
e [ 1+9)

a(s—d/Z

= Ql(a,é) + Qz(&,&) . (26)

The functions Q; and Q2 can be expressed in terms of
the hypergeometric function [1]. However, it suits our

(u? +v?%) + O(u3A3‘du_dt"3)] } : (23)

purpose better to analyze these functions in their inte-
gral representation. Before proceeding let us define the
functions (i = 1,2)

¢i(z,6) =1 + d/2)]—1 /°° dz zd/ze_”Qi(ze“”,tS) ,

0
(27)
so that ¢ = ¢;1 + ¢2.

A. Analysis of ¢,

To evaluate ¢, we first study Q1(c,é). Referring to
Eq. (26) and using the trivial identity (1 +s)™' =1 —
s(1+ s)~!, we find

s—2/d

(1+s)’
(28)

Qi =1~ 2a?B(1 ~2/d,2/d) + zaz/d/ ds
0

where B(a,b) is the beta function [12]. Since we are
interested in @ <« 1, we may expand the final term in
Eq. (28) in powers of . Performing the integral over z,
as defined in Eq. (27), then yields

b1 —1— §z2/d3(1 —9/d,2/d)(1 + 2/d)~(1+4/2)

+0(2) - (29)

B. Analysis of ¢

This function is slightly more complicated to evaluate
due to condition (iii). The lower limit of the s integration
in Q2 is @642 = 26~%2e~*. Condition (iii) indicates
that for small = this quantity is much larger than unity.
However, if x is large enough this is no longer true. We
therefore split the range of the z integration into two
regions separated by zo = In(z6%/2). Condition (iii)
indicates that o > 1. We therefore have

¢2 = [[(1+d/2)]" /o * de z¥2e~=QM

+[[(1+d/2)]* /°° dz md/ze_zQ;2)

To

=) + ¢, (30)
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where ng) is given by the integral form in Eq. (26) with
the lower limit greater than (less than) unity for s = 1 (2).

We shall not go through the explicit evaluation of
¢;1’2). The essential point is that the z integrals are
dominated by the region around z, allowing an asymp-
totic expansion in inverse powers of xo; hence condition

(iii). We find

d
¢o = —6 mo/z [ 4zo

27 | tA@ 0G| ey

where
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d-1 2
d-2)  (d+2)

2 n 1
td > (-1 {(n+ 2)(n+1 - 2/d)

n=1

A(d) = B(1 —2/d,2/d)

1
Yy irz/d) [ (32)

This completes the evaluation of ¢, in the regime de-
scribed by conditions (i)—(iii).

Putting this together, we have from Egs. (16), (21),
(29), and (31) the following expression for the width:

Av

W(t) = /Ow - /ooo = "_("M(Hm/m{exp {”ﬂd)w + ba(d) (rA) (2o (u + 0)7Y2[1 + O(ey 1”]

D1+2/d(u1+2/d + v1+2/d)
Av

— exp {bl (d)

+ by (d) (vA) 2 [o (u) T2 + o (v) /21 + 0(151)1] } ’

(33)

where zo(u) = In[Du/(vA)?%?], and b;(d) and by(d) are functions of d which are just shorthand for the d-dependent
prefactors in the functions ¢; and ¢». We have dropped the term in ¢; which is linear in z since it is always
subdominant to the nonanalytic term of order 22/ (this will no longer be true for d < 2.) Condition (iii) is equivalent
to u > (vA)%2/D. We should therefore cut off the u and v integrals at ug,vo ~ (vA)%/2/D.

Let us consider t > t; = A/D. We may then rescale v and v by t/t;, so that from Eq. (33) the important values of
u and v are of O(1). The cutoffs uo and v are now of order ¢/t; [where t; is the crossover time defined in Eq. (24)].

‘We therefore have

W2 (t) :/ d—“/ D uto)
ug u vo v

y {exp [bl(d) Az/d(u + v)1+2/d N bz(d)(VA)d/z[?JO(u + v)]1+d/2[1 + O(yo_l)]}

I/t1+2/d

A2/d(q1+2/d | y1+2/d)
pti+2/d

~exp (@

where yo(u) = In(uty/t).

Let us now take the limit ¢ <« t;. First, the cutoffs
ug and vo may be taken to zero. Also, the terms in
Eq. (34) denoted by O(y; ') may be safely discarded.
We are therefore left to compare the b; terms to the b,
terms. One finds that the ratio of the b; terms to the b,
terms is of order (t5/t)'*2/4 [In(t2/t)]”(1*%/2) and there-
fore the important terms are those with prefactor b;. The
actual size of these terms is O((A/t)z/d(vt)_l) which is
much less than unity (for ¢ 3> A?%/(d+2)y=d/(d+2)) and
therefore we may expand these terms down from the ex-
ponential to finally obtain

A2/d

204y —
WA(t) = c(d) Jt(d+2)/d >

(35)

where

+ b2(d) (v D)2 [yo (u) T2 + yo (v) 21 + O(yal)}} } ;

(34)

co(d) = = (4m)"¥4B(1 — 2/d,2/d)(1 + 2/d)~(1+4/2)

Ul

1+ ,U)1+2/d — 1= ’U1+2/d]
v(1 + v)1+2/d

xD(1 + 2/d) /oo dv Ul
(36)

To summarize, Eq. (35) is the form for the interface width
in the regime t; < t K t5 for d > 2.

For t < t;, one may see directly from Eq. (33) that the
exponential terms labeled by b; dominate, and may be
expanded down giving one an expression for the interface
width which is simply a constant. This is consistent with
one’s expectations from the early-time analogy with the
EW model. This completes our analysis of the interface
width for d > 2. We have identified three important time
regimes separated by the crossover times ¢; and t;, and
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have calculated the dominant form of the width in each
regime. Simple interpolation formulas from the ¢ < t; to
the t; < t < tp forms for W (t) may be readily derived
from the above analysis. The explicit crossover form for
W (t) around t; is less easy to evaluate.

The appearance of the nontrivial regime for t; < t <
t, is related to the appearance of the nonanalytic term in
the expansion of ¢(z,4), cf. Eq. (29). The naive expan-
sion of ((u)) at the beginning of this section required
the cutoff A to keep the terms finite. However, the ex-
pansion still broke down for ¢t < t3. The reason for this
is the existence of the nonanalytic term of order 2%/4. In
a sense this term replaces the regularization role of the
parameter A for intermediate times. In fact, the theory
is well defined for all times if one takes § — 0 in the
function ¢, since the nonanalytic regulator controls the
potential divergences of the function. We note finally
that the nonanalytic term is only relevant for d > 2. For
d < 2 the linear term in z dominates the behavior of
¢(z,8). The case d = 2 is marginal—the expansion of ¢
involves the term zIn(z) [1] which actually wins asymp-
totically over the linear term. However, for d = 2, the
window of nontrivial behavior closes since the magnitude
of t5 becomes of “microscopic” proportions.
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V. EVALUATION OF THE INTERFACE WIDTH
FOR DIMENSIONS < 2

As indicated at the end of the preceding section, the
irrelevance of the nonanalytic term in the expansion of ¢
for d < 2 means that the behavior of the interface width
for these dimensions is much simpler. One now has just
two dynamic regions, separated by the crossover time ¢;.
We shall not derive the results for W(t) using the elabo-
rate set of functions from the last section (although this
is of course possible [1]), but shall content ourselves with
the simple analytic expansion utilized at the beginning
of the preceding section.

Referring to Eq. (14) and expanding the logarithm in
powers of u, we find

uDt u2D?
(lu)) = exp{"T Y 2 DABr)?

+O(u3D3(Vt)_d(t/A))} (37)

for d < 2. Substituting this expression into Eq. (21) and
scaling © and v by t; = A/D (which is valid for t > ¢;)
yields

|
®du [ dv A
2(4) = bt 27 o~ (utv) 2 3A2,,—dy—(d+2)
W2(t) /0 ” /0 e {exp|:(2_d)(SWy)d/ZtHd/z(u—*—v) + O(udA%y % )}
A 2, 2 3 A2, —dy—(d+2)
— exp (2—d)(87rz/)d/2t1+d/2(u +v4) + O(uw’A*v™% ) . (38)

For times larger than the cutoff, we may expand the ex-
ponential to obtain

W2(t) = 2A

= t > t. 39
(d — 2)(8v)d/2¢1+d/2’ >t (39)

For t < t; one may repeat the above steps without the
(u,v) rescalings to find

2D2t1_d/2
= (d—2)(8mv)42A°

W2(t) t < ty. (40)

This result is in accordance with the usual EW conjecture

for this model for short times.

One may repeat the above steps for the case of d = 2
to find

Aln(t/A)
W/Z —
)= (8mv)t? ’ >t (41)
and the EW result
D%In(t/A)
2 —
W=(t) = B , t << ty. (42)

This completes our study of the interface width for
this model. Before examining a simplified model of the

original equation, we shall study the interface roughness
in the next section. This will increase our understanding
of the results obtained in this and the preceding section.

VI. EVALUATION OF THE AVERAGED
INTERFACE ROUGHNESS

The nonlinear term in the deterministic part of Eq. (4)
is essential if one is to utilize the Hopf-Cole transforma-
tion in order to achieve an exact solution. However, the
results obtained above indicate that for t > t; the fluc-
tuations are decaying in time, which would lead one to
expect that this term becomes subdominant to the lin-
ear diffusion term. In order to clarify this point, we shall
calculate the average surface roughness E(t) = ((Vh)?)
and compare the magnitude of this (with a factor of v)
to the time derivative of the average height [13]. If the
nonlinear term is relevant, it should be (at least) of the
same order as O;(h) which for ¢ > t; has a magnitude
of 1/t, cf. Eq. (20). We shall not present this calcula-
tion in detail, since it may be constructed easily from the
preceding account of the evaluation of W ().

The most convenient way to calculate E(t) is through
the limiting procedure
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. C(r,t)

E(t) = }1_1’% 2 (43)
where C(r,t) = ([h(r,t) — h(0,%)]?). This correlation
function may be evaluated through the double applica-
tion of the logarithm representation Eq. (9) in much the
same way as was performed for W(t) in Eq. (21). One
then is confronted with the simple, but tedious, task of
taking the limit of 7 — 0; i.e., extracting the leading r2
dependence of C(r,t). One finally obtains for ¢ > ¢;

t
B(t) = -2 (8mv)~¥2 [ a¢ p-0+d/2)
4I/t2 A

_ (817)_d/2 i Al—d/z
N ( 2d vt vi/2t |- (44)
For d > 2 one then finds that the ratio of vE(t) to d;(h)

18

Al—d/z
va/2¢

vE(t) -
(1/%)

Therefore we have the result that for d > 2 in the regime
t; < t < t, the nonlinear term v(Vh)? is highly relevant
to the dynamic evolution of the system. The nontrivial
result for the interface evolution in this time regime that
was derived in Sec. IV, Eq. (35), may consequently be
termed a strong-coupling result.

Analysis of Eq. (44) for d < 2 reveals that the nonlinear
term is irrelevant for ¢ > ¢; (actually it is irrelevant for
all times, since for t < t; we have already shown that
the EW results are valid). This will be demonstrated
explicitly in the next section when we study a simplified
version of Eq. (4) which is valid for the region ¢t > ¢;.

The case of d = 2 is marginal in the sense that the ratio
of vE(t) to 8;(h) is O(1/vt). The cutoff A does not now
determine the relevance of the nonlinearity. However,
if v is taken to be “very small,” one may have an ap-
preciable time regime where the nonlinearity is relevant.
Investigation of this more subtle point is in progress.

= (t2/t). (45)

VII. A SIMPLIFIED THEORY

In this section we shall motivate a simplified version
of Eq. (4) which is applicable for late times. The exact
results derived above indicate that the fluctuations of the
interface decay for late times. Therefore the field h =
h — (h) will be much smaller than unity in the asymptotic
regime [14]. We shall concentrate on the regime t > ¢;.
In this case (h) = In(t/t1). Rewriting Eq. (4) in terms of
h we have

dh = vV2h + v(Vh)? — %[1 — exp(—h)]

tin—1 -
+(1n—tl exp(—h). (46)
We have chosen to write the equation in the above form
so that the effective noise in the equation has zero mean
[one can easily show that for the distribution in Eq. (3)
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(n) = 1/t1]. We prefer at this stage to replace this noise
(n — 1/t1) by a Gaussian distributed noise £ with zero
mean and correlator,

(€(x, )E(x, 1)) = (A/t])6(x —x)o(t —t') ,  (47)

which is matched to the correlator of (n — 1/t1). As we
mentioned before, the results of the previous sections are
unaffected by changing the distribution Eq. (3) to either
a uniform or bimodal form. We therefore expect univer-
sality with respect to changes in the noise distribution,
and can use the Gaussian noise defined above with confi-
dence. The use of the Gaussian distribution is purely for
convenience, not from necessity.

For t > t;, the interface width as calculated in the
previous sections is always much smaller than unity (as
long as v < 1/A) which implies that A < 1 in this
regime. We may therefore expand the exponential terms
in Eq. (46). Retaining the leading orders we have

dh =vV2h + v(Vh)2 — = 4+ —¢. (48)

We expect this equation to be a valid description of the
original model for all d as long as t > t;.

For very long times, we may also discard the nonlin-
ear term. This is consistent with the calculation of the
preceding section. The resulting linear equation may be
easily solved to yield

h(x,t) = (ta/1) / ddy / dt' g(x — y,t — )E(y,t).
(49)

The squared interface width W2(t) is equal to (h?) and
may be evaluated from Eq. (49). We find

W2(t) = (A/t?) /L: dt' (8mut')~4/2, (50)

Performing the ¢’ integral then yields the asymptotic re-
sult

ra‘%’z‘jA(s’ﬂ'l/)”d/ztﬁ(d‘Fz)/z 0<d<?2
A(87v)~1 21In(t/A) d =2 (51)

(211)A(‘l_‘i)/z(87r1/)_d/2t_2 d>2.

W3(t) =

These results are precisely those obtained in the deep
asymptotic regime, cf. Egs. (25), (39), and (41). One
may feel cheated at this stage since we seem to have de-
rived most of the results of the exact calculation from a
very simple linearization scheme. However, the results
obtained are for the very large time regime. For d < 2
this regime extends all the way back to ¢ ~ t; as we have
seen. However, for d > 2, there is an arbitrarily large
regime (in the sense of taking A as small as one wishes)
separating the regimes associated with ¢t <« t; (which
is just EW growth) and ¢ > t; (which is EW growth
with a 1/t2 prefactor for the mean square fluctuations).
The linear equation is unable to capture this nontrivial
regime—the nonlinear term (Vh)? is essential. We have
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proved the overriding importance of this term in the pre-

ceding section for d > 2 in the regime t; < t < t,.

Before discussing this issue any further we wish to di-
rect our attention away from Eq. (48) to a related model.
The transformation

0 = (t/t1)h (52)
provides us with the equation

I/t]_

8,0 = vV?0 + ;

(V6)* +¢. (53)
Surprisingly we have ended up with an equation which is
very closely related to the original KPZ equation, Eq. (1),
the difference being in the amplitude of the nonlinear
term having a factor proportional to t=!. Again, we
stress that this equation for @ is a valid description of
our original model for ¢ >> t;. The above calculation for
the linearized equation for h may be applied to Eq. (53).
The “interface” fluctuations of 8 are defined by

W(t) = [(09)]Y2 = (t/t)W (2). (54)

We see from Eq. (51) that the results for W(t) for very
late times are simply the EW results for an interface
evolving under the linear diffusion equation. This is rea-
sonable considering the nonlinearity has an amplitude
proportional to 1/t. We also see that this EW behavior
is valid for the entire regime t > ¢; for d < 2. How-
ever, from the analysis in previous sections we have the
remarkable result that for d > 2 there exists a scaling
regime for t; < t < t; for which the nonlinear term is
strongly relevant. Combining Egs. (35) and (54) we have
fort; K t K to

Al/d

I/l/zt]_

W(t) ~ P, (55)

where

(d-2)

We refer the reader to Ref. [15] where simple scaling
and symmetry arguments are used to study the KPZ
equation with nonlinear coupling A ~ Agt~®. They find
that the critical dimension of the model is shifted accord-
ing to d. = 2 — 4a. In the present case, @ = 1, which
implies that for all d > —2 we are above d. and can
expect an asymptotically smooth surface, as indeed was
found above. The interesting behavior in our model oc-
curs for “intermediate” times (although ¢, may be made
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extremely large by reducing A) for d > 2, which is not
accessible from the simple arguments presented in [15].

VIII. CONCLUSIONS

We have studied a recently proposed model of interface
growth which allows exact solution. The model is physi-
cally distinct from more common interface models, such
as the KPZ equation, in that the fluctuations in the in-
terface asymptotically decay in time. This “reality gap”
can be eliminated though, by studying the asymptotic
behavior of the field § = (t/t1)(h — (h)). This new field
satisfies the KPZ equation, (1), with a time-dependent
coupling which is proportional to ¢,/t. All results ob-
tained for the original model, Eq. (2), may be applied to
the growth equation for 6 for times t > t;.

The main quantities calculated in this paper are the
interface width W (t) and the interface roughness E(t).
For d < 2, W(t) has a simple decaying form throughout
the entire region ¢ > t1, and E(¢) is irrelevant. The main
result of this paper is the behavior of these quantities for
d > 2. We have found the existence of a region t; € t <
t within which W (¢) decays with nontrivial, d-dependent
exponents, and where E(t) is strongly relevant. For ¢ >
tz, W(t) decays as 1/t for all d > 2 and E(t) becomes
irrelevant.

In terms of the dynamics of 8, we find from the above-
mentioned result that the rms fluctuations in @ grow as t?
in the intermediate-time regime defined above, for d > 2,
where 8 = (d — 2)/2d is a nontrivial, strong-coupling
exponent.

It would be of interest to study the RG properties of
Eq. (53) in order to explicitly see the emergence of the
strong-coupling fixed point for intermediate times. Such
a study requires the application of dynamic RG for pre-
asymptotic times, rather than the usual aysmptotic anal-
ysis [5]. This is a nontrivial task in general, although
examples are known where universality and scaling have
been rigorously demonstrated using RG for intermediate
times [16].
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